
Modelado y simulación de propagación de fracturas en 
cáscaras delgadas frágiles mediante campos de fase 
Resumen 

Describir y comprender los principios mecánicos que gobiernan la evolución durante la propagación de fisuras 
en películas delgadas frágiles, posee un gran interés industrial (p. ej. embalaje, fabricación, diseño de 
componentes) y en ciencias de los materiales. En este trabajo se describe la propagación de fracturas en cáscaras 
delgadas frágiles mediante modelos difusos de discontinuidad libre (campos de fase) y su análisis por medio de 
simulaciones numéricas mediante el método de Galerkin, lo cual requiere la implementación de técnicas 
avanzadas de discretización como superficies de subdivisión. Para llevar a cabo este trabajo se combinan 
modelos de campo de fase de cuarto orden con un modelo geométricamente no lineal de cáscaras delgadas de 
Kirchhoff-Love, y un modelo cohesivo para describir el efecto de adhesión a un sustrato rígido. En la actualidad 
la modelización de fractura mediante campos de fase ha generado un gran interés, debido a su simplicidad 
derivada del tratamiento unificado de geometría y mecánica. Mientras que su alto coste computacional se está 
viendo superado por su capacidad de tratar interfases móviles de manera integrada, así como la física que 
gobierna su evolución. 

Palabras clave: Kirchhoff-Love, empaquetamiento, grandes deformaciones, superficies de subdivisión. 

	  
Competencia	   entre	   modos	   de	   falla	   (fractura	   vs	   pandeo)	   en	   una	   cáscara	   cilíndrica	   frágil	   simplemente	  
soportada	   en	   sus	   extremos	   sometida	   a	   torsión.	   En	   la	   figura	   se	   representan	   las	   curvas	   que	   delimitan	   la	  
transición	  entre	  estos	  estados	  de	  falla	  de	  acuerdo	  a	  los	  parámetros	  geométricos,	  materiales,	  y	  del	  ángulo	  y	  
longitud	   de	   la	   fractura	   inicial.	   En	   particular	   es	   posible	   observar	   que	   dada	   una	   cáscara	   cilíndrica	   con	  
geometría	  constante,	  con	  una	   fractura	   inicial	  𝛽=45º,	  es	  posible	  observar	   la	   transición	  desde	  un	   fallo	  por	  
propagación	  de	  fractura	  a	  otro	  donde	  antes	  ocurre	  el	  pandeo	  de	  la	  estructura,	  esto	  se	  logra	  modulando	  la	  
relación	  adimensional	  Gc/(tE)	  desde	  10-‐7	  a	  10-‐2	  (desde	  abajo	  hacia	  arriba).	  Siendo	  E	  el	  módulo	  de	  Young,	  ν	  
el	  coeficiente	  de	  Poisson,	  y	  Gc	  energía	  de	  fractura	  de	  Griffith.	  
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Si	   bien	   los	   experimentos	   retratan	   fenómenos	  mecánicos	  muy	   ricos,	   comúnmente	   no	   pueden	   identificar	  
con	   precisión	   los	   principios	   básicos	   que	   rigen	   la	   evolución	   de	   las	   fisuras	   por	   un	   dado	   camino.	   (Arriba)	  
Resultados	  experimentales	  obtenidos	  por	  (Romero	  et	  al.,	  2013),	  al	  tirar	  de	  una	  porción	  de	  una	  lámina	  de	  
polipropileno	   se	   genera	   una	   fractura	   en	   forma	   de	   espiral.	   (Centro	   y	   Debajo)	   Resultados	   obtenidos	  
mediante	  simulaciones	  realizadas	  con	  códigos	  fuente	  y	  modelos	  desarrollados	  en	  nuestro	  grupo,	  el	  mapa	  
de	  colores	  describe	  el	  campo	  de	  fase.	  La	  estructura	  que	  se	  genera	  con	  forma	  de	  pino,	  es	  producida	  por	  los	  
giros	  de	  la	  tira	  liberada	  a	  lo	  largo	  de	  la	  dirección	  de	  la	  fuerza	  aplicada.	  
Fuentes:	  Romero	  et	  al.,	  2013;	  Li	  et	  al.,	  2016.	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

can design an initial seed with a convex hull outlined by a
perimeter with one exterior angle. This angle must be conve-
niently chosen to avoid shedding a new crack when propagating
the fracture. The obvious candidate is an initial cut having a
convex hull with the same shape of the spiral (region CDT E in
Fig. 4c). However, this does not exhaust the possible seeds. We
conjecture that any cut with a convex hull containing only one
point of discontinuity in the tangent which denes an exterior angle
X # b would lead to the same result.

6 Pulling spirals

Spiral crack paths are not restricted to the situation where a tool
is pushed against the sheet. Instead of pushing the lip ET in
Fig. 4c, the tear can be pulled upwards to propagate the crack, as
shown in Fig. 6. To systematically study spiral propagation by
pulling, we replace the initial straight incision made for the
pushing case by a circle cut with a curved notchAB that follows
the recipe given in the last section. The cut AB is conveniently
prepared to have a convex hull with no discontinuity at point A
and an exterior angle b at point B. By pulling upwards the ap
le by the notch, the crack atB starts propagating along a spiral
path (see ESI† where a movie of the process is presented).

Because of the very low bending rigidity, all the region where
the sheet can move out-of-plane does so (see Fig. 6). We have
seen earlier that this region is the convex hull of the cut. As a
result, the operator effectively pulls on a fold which is a segment
starting on the crack tip T and reaching tangentially the
previous cut at point E . This fold shares exactly the same
geometry with the lip on which the tool was pushing in previous
sections. However, the loading is of course different from the
pushing spiral. The fracture is now mediated by a fold con-
necting the ap with the lm where bending and stretching
energy is focused. In a rather similar case of a torn ap strongly
adhering to a substrate,10,13 fracture propagates with an angle b

lower than p/2. In the geometry studied here, we can only

provide a rough estimate of angle b ¼ p=2" 4
ffiffiffiffiffiffiffiffiffi
lB=L

p
based on

the assumption that the fold takes a cylindrical shape. Here L is
the total length of the fold, and ‘B ¼ B/gt is a new length scale
in the problem, involving work of fracture and bending rigidity
B. We again notice a weak dependence of the inward angle p/2
" b of propagation (inverse square root) with the width of the
fold L. Moreover, in our experiments this angle is very small (on
the order of 4 degrees for typical a value of L ¼ 10 cm) because
‘B # 30 mm. In fact ‘B / 0 when t / 0 (compare with ‘E that
remains constant in this limit), so that propagation tends to be
perpendicular to the fold in this innitely thin sheet limit.29 We
will therefore again assume that b is a constant in a rst
approximation. We then expect a self-developing logarithmic
spiral very similar to the previous case.

Proceeding in the same way as for the spiral obtained by
pushing, we determine the pole of the spiral obtained by pull-
ing, and thereaer we measure the distance OT , the angle of
rotation q, and the local angles a and b. In Fig. 7a we plot
r ¼ r(q). Fig. 7b shows that b has regular oscillations of period p

around a constant value hbi ¼ 86.9$ % 9.0$. Here the error
includes the amplitude of the observed oscillations. The fact
that b < p/2 does not prevent the spiral to be divergent though.
The semilog plot of Fig. 7a shows that the crack path behaves in
average as a logarithmic spiral with an experimental slope cot
f ¼ 0.24 % 0.01 which agrees with the estimation given by eqn
(4) cot f ¼ 0.25. This lower pitch of the spiral is consistent with
propagation with a predicted angle b slightly lower than p/2.
Here again anisotropy of the material results in a periodic effect
on the direction of propagation.

Fig. 6 Spiral crack obtained by pulling on a flap of material. (a) Initial stage at
which a notch is cut tangent to a circular hole in the sheet; (b) initial pulling leads
to a crack path; (c) and (d), later stages of crack propagation. Note the way in
which the released strip twists along the pushing direction forming a pine tree
structure.

Fig. 7 Experimental pulled spiral (inset: scanned fracture trajectory). Measure-
ment of the radius of the spiral as a function of the rotation angle for two spirals.
Here r0 corresponds to the minimum measured radius of the spiral obtained by
using our experimental method explained in Section 4. It corresponds to the
distance from the spiral pole to pointB , typically 0.7 cm. The figure at the bottom
represents measurements of propagation angle b exhibiting oscillations due to
anisotropy around an average value slightly lower than p/2.
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Phase	  field	  modeling	  and	  simulation	  of	  crack	  propagation	  in	  brittle	  thin	  shells	  
	  
Abstract	  
	  
Describe	   and	   understand	   the	   mechanical	   principles	   governing	   the	   evolution	   during	   brittle	   crack	  
propagation	   in	   thin	   films,	   has	   great	   industrial	   interest	   (e.g.	   packaging,	   manufacturing,	   design	   of	  
components)	  and	  materials	  science.	  In	  this	  work,	  we	  describe	  fracture	  propagation	  in	  brittle	  thin	  shells	  by	  
fuzzy	  models	   of	   free	   discontinuity	   (phase	   field),	   and	   their	   analysis	   by	  means	   of	   numerical	   simulations	  
using	  the	  Galerkin	  method,	  which	  requires	  the	   implementation	  of	  advanced	  discretization	  techniques	  as	  
subdivision	   surfaces.	   To	   carry	   out	   this	   work	   we	   combine	   phase	   field	   models	   of	   fourth	   order	   with	   a	  
geometrically	  nonlinear	  Kirchhoff-‐Love	  model	  of	  thin	  shells,	  and	  a	  cohesive	  model	  to	  describe	  the	  effect	  of	  
adherence	   to	   a	   rigid	   substrate.	   At	   the	   present,	   phase	   field	   fracture	   modeling	   has	   generated	   interest	  
because	  of	   its	  simplicity	  derived	  from	  the	  unified	  treatment	  of	  geometry	  and	  mechanics.	  While,	   the	  high	  
computational	  cost	  of	  phase	  field	  models	   is	  being	  exceeded	  by	  its	  ability	  to	  treat	  mobile	   interfaces	   in	  an	  
integrated	  manner,	  and	  the	  physics	  governing	  its	  evolution.	  
	  
Keywords:	  Kirchhoff-‐Love,	  packaging,	  finite	  deformations,	  subdivision	  surfaces.	  


