
Modelado y simulación de propagación de fracturas en 
cáscaras delgadas frágiles mediante campos de fase 
Resumen 

Describir y comprender los principios mecánicos que gobiernan la evolución durante la propagación de fisuras 
en películas delgadas frágiles, posee un gran interés industrial (p. ej. embalaje, fabricación, diseño de 
componentes) y en ciencias de los materiales. En este trabajo se describe la propagación de fracturas en cáscaras 
delgadas frágiles mediante modelos difusos de discontinuidad libre (campos de fase) y su análisis por medio de 
simulaciones numéricas mediante el método de Galerkin, lo cual requiere la implementación de técnicas 
avanzadas de discretización como superficies de subdivisión. Para llevar a cabo este trabajo se combinan 
modelos de campo de fase de cuarto orden con un modelo geométricamente no lineal de cáscaras delgadas de 
Kirchhoff-Love, y un modelo cohesivo para describir el efecto de adhesión a un sustrato rígido. En la actualidad 
la modelización de fractura mediante campos de fase ha generado un gran interés, debido a su simplicidad 
derivada del tratamiento unificado de geometría y mecánica. Mientras que su alto coste computacional se está 
viendo superado por su capacidad de tratar interfases móviles de manera integrada, así como la física que 
gobierna su evolución. 

Palabras clave: Kirchhoff-Love, empaquetamiento, grandes deformaciones, superficies de subdivisión. 

	
  
Competencia	
   entre	
   modos	
   de	
   falla	
   (fractura	
   vs	
   pandeo)	
   en	
   una	
   cáscara	
   cilíndrica	
   frágil	
   simplemente	
  
soportada	
   en	
   sus	
   extremos	
   sometida	
   a	
   torsión.	
   En	
   la	
   figura	
   se	
   representan	
   las	
   curvas	
   que	
   delimitan	
   la	
  
transición	
  entre	
  estos	
  estados	
  de	
  falla	
  de	
  acuerdo	
  a	
  los	
  parámetros	
  geométricos,	
  materiales,	
  y	
  del	
  ángulo	
  y	
  
longitud	
   de	
   la	
   fractura	
   inicial.	
   En	
   particular	
   es	
   posible	
   observar	
   que	
   dada	
   una	
   cáscara	
   cilíndrica	
   con	
  
geometría	
  constante,	
  con	
  una	
   fractura	
   inicial	
  𝛽=45º,	
  es	
  posible	
  observar	
   la	
   transición	
  desde	
  un	
   fallo	
  por	
  
propagación	
  de	
  fractura	
  a	
  otro	
  donde	
  antes	
  ocurre	
  el	
  pandeo	
  de	
  la	
  estructura,	
  esto	
  se	
  logra	
  modulando	
  la	
  
relación	
  adimensional	
  Gc/(tE)	
  desde	
  10-­‐7	
  a	
  10-­‐2	
  (desde	
  abajo	
  hacia	
  arriba).	
  Siendo	
  E	
  el	
  módulo	
  de	
  Young,	
  ν	
  
el	
  coeficiente	
  de	
  Poisson,	
  y	
  Gc	
  energía	
  de	
  fractura	
  de	
  Griffith.	
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Si	
   bien	
   los	
   experimentos	
   retratan	
   fenómenos	
  mecánicos	
  muy	
   ricos,	
   comúnmente	
   no	
   pueden	
   identificar	
  
con	
   precisión	
   los	
   principios	
   básicos	
   que	
   rigen	
   la	
   evolución	
   de	
   las	
   fisuras	
   por	
   un	
   dado	
   camino.	
   (Arriba)	
  
Resultados	
  experimentales	
  obtenidos	
  por	
  (Romero	
  et	
  al.,	
  2013),	
  al	
  tirar	
  de	
  una	
  porción	
  de	
  una	
  lámina	
  de	
  
polipropileno	
   se	
   genera	
   una	
   fractura	
   en	
   forma	
   de	
   espiral.	
   (Centro	
   y	
   Debajo)	
   Resultados	
   obtenidos	
  
mediante	
  simulaciones	
  realizadas	
  con	
  códigos	
  fuente	
  y	
  modelos	
  desarrollados	
  en	
  nuestro	
  grupo,	
  el	
  mapa	
  
de	
  colores	
  describe	
  el	
  campo	
  de	
  fase.	
  La	
  estructura	
  que	
  se	
  genera	
  con	
  forma	
  de	
  pino,	
  es	
  producida	
  por	
  los	
  
giros	
  de	
  la	
  tira	
  liberada	
  a	
  lo	
  largo	
  de	
  la	
  dirección	
  de	
  la	
  fuerza	
  aplicada.	
  
Fuentes:	
  Romero	
  et	
  al.,	
  2013;	
  Li	
  et	
  al.,	
  2016.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

can design an initial seed with a convex hull outlined by a
perimeter with one exterior angle. This angle must be conve-
niently chosen to avoid shedding a new crack when propagating
the fracture. The obvious candidate is an initial cut having a
convex hull with the same shape of the spiral (region CDT E in
Fig. 4c). However, this does not exhaust the possible seeds. We
conjecture that any cut with a convex hull containing only one
point of discontinuity in the tangent which denes an exterior angle
X # b would lead to the same result.

6 Pulling spirals

Spiral crack paths are not restricted to the situation where a tool
is pushed against the sheet. Instead of pushing the lip ET in
Fig. 4c, the tear can be pulled upwards to propagate the crack, as
shown in Fig. 6. To systematically study spiral propagation by
pulling, we replace the initial straight incision made for the
pushing case by a circle cut with a curved notchAB that follows
the recipe given in the last section. The cut AB is conveniently
prepared to have a convex hull with no discontinuity at point A
and an exterior angle b at point B. By pulling upwards the ap
le by the notch, the crack atB starts propagating along a spiral
path (see ESI† where a movie of the process is presented).

Because of the very low bending rigidity, all the region where
the sheet can move out-of-plane does so (see Fig. 6). We have
seen earlier that this region is the convex hull of the cut. As a
result, the operator effectively pulls on a fold which is a segment
starting on the crack tip T and reaching tangentially the
previous cut at point E . This fold shares exactly the same
geometry with the lip on which the tool was pushing in previous
sections. However, the loading is of course different from the
pushing spiral. The fracture is now mediated by a fold con-
necting the ap with the lm where bending and stretching
energy is focused. In a rather similar case of a torn ap strongly
adhering to a substrate,10,13 fracture propagates with an angle b

lower than p/2. In the geometry studied here, we can only

provide a rough estimate of angle b ¼ p=2" 4
ffiffiffiffiffiffiffiffiffi
lB=L

p
based on

the assumption that the fold takes a cylindrical shape. Here L is
the total length of the fold, and ‘B ¼ B/gt is a new length scale
in the problem, involving work of fracture and bending rigidity
B. We again notice a weak dependence of the inward angle p/2
" b of propagation (inverse square root) with the width of the
fold L. Moreover, in our experiments this angle is very small (on
the order of 4 degrees for typical a value of L ¼ 10 cm) because
‘B # 30 mm. In fact ‘B / 0 when t / 0 (compare with ‘E that
remains constant in this limit), so that propagation tends to be
perpendicular to the fold in this innitely thin sheet limit.29 We
will therefore again assume that b is a constant in a rst
approximation. We then expect a self-developing logarithmic
spiral very similar to the previous case.

Proceeding in the same way as for the spiral obtained by
pushing, we determine the pole of the spiral obtained by pull-
ing, and thereaer we measure the distance OT , the angle of
rotation q, and the local angles a and b. In Fig. 7a we plot
r ¼ r(q). Fig. 7b shows that b has regular oscillations of period p

around a constant value hbi ¼ 86.9$ % 9.0$. Here the error
includes the amplitude of the observed oscillations. The fact
that b < p/2 does not prevent the spiral to be divergent though.
The semilog plot of Fig. 7a shows that the crack path behaves in
average as a logarithmic spiral with an experimental slope cot
f ¼ 0.24 % 0.01 which agrees with the estimation given by eqn
(4) cot f ¼ 0.25. This lower pitch of the spiral is consistent with
propagation with a predicted angle b slightly lower than p/2.
Here again anisotropy of the material results in a periodic effect
on the direction of propagation.

Fig. 6 Spiral crack obtained by pulling on a flap of material. (a) Initial stage at
which a notch is cut tangent to a circular hole in the sheet; (b) initial pulling leads
to a crack path; (c) and (d), later stages of crack propagation. Note the way in
which the released strip twists along the pushing direction forming a pine tree
structure.

Fig. 7 Experimental pulled spiral (inset: scanned fracture trajectory). Measure-
ment of the radius of the spiral as a function of the rotation angle for two spirals.
Here r0 corresponds to the minimum measured radius of the spiral obtained by
using our experimental method explained in Section 4. It corresponds to the
distance from the spiral pole to pointB , typically 0.7 cm. The figure at the bottom
represents measurements of propagation angle b exhibiting oscillations due to
anisotropy around an average value slightly lower than p/2.

8286 | Soft Matter, 2013, 9, 8282–8288 This journal is ª The Royal Society of Chemistry 2013

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
9 

Ju
ne

 2
01

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
ite

cn
ic

a 
de

 C
at

al
un

ya
 o

n 
10

/1
2/

20
14

 1
1:

37
:4

7.
 

View Article Online

Campo de fase

can design an initial seed with a convex hull outlined by a
perimeter with one exterior angle. This angle must be conve-
niently chosen to avoid shedding a new crack when propagating
the fracture. The obvious candidate is an initial cut having a
convex hull with the same shape of the spiral (region CDT E in
Fig. 4c). However, this does not exhaust the possible seeds. We
conjecture that any cut with a convex hull containing only one
point of discontinuity in the tangent which denes an exterior angle
X # b would lead to the same result.

6 Pulling spirals

Spiral crack paths are not restricted to the situation where a tool
is pushed against the sheet. Instead of pushing the lip ET in
Fig. 4c, the tear can be pulled upwards to propagate the crack, as
shown in Fig. 6. To systematically study spiral propagation by
pulling, we replace the initial straight incision made for the
pushing case by a circle cut with a curved notchAB that follows
the recipe given in the last section. The cut AB is conveniently
prepared to have a convex hull with no discontinuity at point A
and an exterior angle b at point B. By pulling upwards the ap
le by the notch, the crack atB starts propagating along a spiral
path (see ESI† where a movie of the process is presented).

Because of the very low bending rigidity, all the region where
the sheet can move out-of-plane does so (see Fig. 6). We have
seen earlier that this region is the convex hull of the cut. As a
result, the operator effectively pulls on a fold which is a segment
starting on the crack tip T and reaching tangentially the
previous cut at point E . This fold shares exactly the same
geometry with the lip on which the tool was pushing in previous
sections. However, the loading is of course different from the
pushing spiral. The fracture is now mediated by a fold con-
necting the ap with the lm where bending and stretching
energy is focused. In a rather similar case of a torn ap strongly
adhering to a substrate,10,13 fracture propagates with an angle b

lower than p/2. In the geometry studied here, we can only

provide a rough estimate of angle b ¼ p=2" 4
ffiffiffiffiffiffiffiffiffi
lB=L

p
based on

the assumption that the fold takes a cylindrical shape. Here L is
the total length of the fold, and ‘B ¼ B/gt is a new length scale
in the problem, involving work of fracture and bending rigidity
B. We again notice a weak dependence of the inward angle p/2
" b of propagation (inverse square root) with the width of the
fold L. Moreover, in our experiments this angle is very small (on
the order of 4 degrees for typical a value of L ¼ 10 cm) because
‘B # 30 mm. In fact ‘B / 0 when t / 0 (compare with ‘E that
remains constant in this limit), so that propagation tends to be
perpendicular to the fold in this innitely thin sheet limit.29 We
will therefore again assume that b is a constant in a rst
approximation. We then expect a self-developing logarithmic
spiral very similar to the previous case.

Proceeding in the same way as for the spiral obtained by
pushing, we determine the pole of the spiral obtained by pull-
ing, and thereaer we measure the distance OT , the angle of
rotation q, and the local angles a and b. In Fig. 7a we plot
r ¼ r(q). Fig. 7b shows that b has regular oscillations of period p

around a constant value hbi ¼ 86.9$ % 9.0$. Here the error
includes the amplitude of the observed oscillations. The fact
that b < p/2 does not prevent the spiral to be divergent though.
The semilog plot of Fig. 7a shows that the crack path behaves in
average as a logarithmic spiral with an experimental slope cot
f ¼ 0.24 % 0.01 which agrees with the estimation given by eqn
(4) cot f ¼ 0.25. This lower pitch of the spiral is consistent with
propagation with a predicted angle b slightly lower than p/2.
Here again anisotropy of the material results in a periodic effect
on the direction of propagation.

Fig. 6 Spiral crack obtained by pulling on a flap of material. (a) Initial stage at
which a notch is cut tangent to a circular hole in the sheet; (b) initial pulling leads
to a crack path; (c) and (d), later stages of crack propagation. Note the way in
which the released strip twists along the pushing direction forming a pine tree
structure.

Fig. 7 Experimental pulled spiral (inset: scanned fracture trajectory). Measure-
ment of the radius of the spiral as a function of the rotation angle for two spirals.
Here r0 corresponds to the minimum measured radius of the spiral obtained by
using our experimental method explained in Section 4. It corresponds to the
distance from the spiral pole to pointB , typically 0.7 cm. The figure at the bottom
represents measurements of propagation angle b exhibiting oscillations due to
anisotropy around an average value slightly lower than p/2.

8286 | Soft Matter, 2013, 9, 8282–8288 This journal is ª The Royal Society of Chemistry 2013

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
9 

Ju
ne

 2
01

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
ite

cn
ic

a 
de

 C
at

al
un

ya
 o

n 
10

/1
2/

20
14

 1
1:

37
:4

7.
 

View Article Online

can design an initial seed with a convex hull outlined by a
perimeter with one exterior angle. This angle must be conve-
niently chosen to avoid shedding a new crack when propagating
the fracture. The obvious candidate is an initial cut having a
convex hull with the same shape of the spiral (region CDT E in
Fig. 4c). However, this does not exhaust the possible seeds. We
conjecture that any cut with a convex hull containing only one
point of discontinuity in the tangent which denes an exterior angle
X # b would lead to the same result.

6 Pulling spirals

Spiral crack paths are not restricted to the situation where a tool
is pushed against the sheet. Instead of pushing the lip ET in
Fig. 4c, the tear can be pulled upwards to propagate the crack, as
shown in Fig. 6. To systematically study spiral propagation by
pulling, we replace the initial straight incision made for the
pushing case by a circle cut with a curved notchAB that follows
the recipe given in the last section. The cut AB is conveniently
prepared to have a convex hull with no discontinuity at point A
and an exterior angle b at point B. By pulling upwards the ap
le by the notch, the crack atB starts propagating along a spiral
path (see ESI† where a movie of the process is presented).

Because of the very low bending rigidity, all the region where
the sheet can move out-of-plane does so (see Fig. 6). We have
seen earlier that this region is the convex hull of the cut. As a
result, the operator effectively pulls on a fold which is a segment
starting on the crack tip T and reaching tangentially the
previous cut at point E . This fold shares exactly the same
geometry with the lip on which the tool was pushing in previous
sections. However, the loading is of course different from the
pushing spiral. The fracture is now mediated by a fold con-
necting the ap with the lm where bending and stretching
energy is focused. In a rather similar case of a torn ap strongly
adhering to a substrate,10,13 fracture propagates with an angle b

lower than p/2. In the geometry studied here, we can only

provide a rough estimate of angle b ¼ p=2" 4
ffiffiffiffiffiffiffiffiffi
lB=L

p
based on

the assumption that the fold takes a cylindrical shape. Here L is
the total length of the fold, and ‘B ¼ B/gt is a new length scale
in the problem, involving work of fracture and bending rigidity
B. We again notice a weak dependence of the inward angle p/2
" b of propagation (inverse square root) with the width of the
fold L. Moreover, in our experiments this angle is very small (on
the order of 4 degrees for typical a value of L ¼ 10 cm) because
‘B # 30 mm. In fact ‘B / 0 when t / 0 (compare with ‘E that
remains constant in this limit), so that propagation tends to be
perpendicular to the fold in this innitely thin sheet limit.29 We
will therefore again assume that b is a constant in a rst
approximation. We then expect a self-developing logarithmic
spiral very similar to the previous case.

Proceeding in the same way as for the spiral obtained by
pushing, we determine the pole of the spiral obtained by pull-
ing, and thereaer we measure the distance OT , the angle of
rotation q, and the local angles a and b. In Fig. 7a we plot
r ¼ r(q). Fig. 7b shows that b has regular oscillations of period p

around a constant value hbi ¼ 86.9$ % 9.0$. Here the error
includes the amplitude of the observed oscillations. The fact
that b < p/2 does not prevent the spiral to be divergent though.
The semilog plot of Fig. 7a shows that the crack path behaves in
average as a logarithmic spiral with an experimental slope cot
f ¼ 0.24 % 0.01 which agrees with the estimation given by eqn
(4) cot f ¼ 0.25. This lower pitch of the spiral is consistent with
propagation with a predicted angle b slightly lower than p/2.
Here again anisotropy of the material results in a periodic effect
on the direction of propagation.

Fig. 6 Spiral crack obtained by pulling on a flap of material. (a) Initial stage at
which a notch is cut tangent to a circular hole in the sheet; (b) initial pulling leads
to a crack path; (c) and (d), later stages of crack propagation. Note the way in
which the released strip twists along the pushing direction forming a pine tree
structure.

Fig. 7 Experimental pulled spiral (inset: scanned fracture trajectory). Measure-
ment of the radius of the spiral as a function of the rotation angle for two spirals.
Here r0 corresponds to the minimum measured radius of the spiral obtained by
using our experimental method explained in Section 4. It corresponds to the
distance from the spiral pole to pointB , typically 0.7 cm. The figure at the bottom
represents measurements of propagation angle b exhibiting oscillations due to
anisotropy around an average value slightly lower than p/2.

8286 | Soft Matter, 2013, 9, 8282–8288 This journal is ª The Royal Society of Chemistry 2013

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
9 

Ju
ne

 2
01

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
ite

cn
ic

a 
de

 C
at

al
un

ya
 o

n 
10

/1
2/

20
14

 1
1:

37
:4

7.
 

View Article Online

r ✓

(a) (b)

✓

0.4 0.9 1.4 1.9 2.4
0

2

4

6

8

log r



Phase	
  field	
  modeling	
  and	
  simulation	
  of	
  crack	
  propagation	
  in	
  brittle	
  thin	
  shells	
  
	
  
Abstract	
  
	
  
Describe	
   and	
   understand	
   the	
   mechanical	
   principles	
   governing	
   the	
   evolution	
   during	
   brittle	
   crack	
  
propagation	
   in	
   thin	
   films,	
   has	
   great	
   industrial	
   interest	
   (e.g.	
   packaging,	
   manufacturing,	
   design	
   of	
  
components)	
  and	
  materials	
  science.	
  In	
  this	
  work,	
  we	
  describe	
  fracture	
  propagation	
  in	
  brittle	
  thin	
  shells	
  by	
  
fuzzy	
  models	
   of	
   free	
   discontinuity	
   (phase	
   field),	
   and	
   their	
   analysis	
   by	
  means	
   of	
   numerical	
   simulations	
  
using	
  the	
  Galerkin	
  method,	
  which	
  requires	
  the	
   implementation	
  of	
  advanced	
  discretization	
  techniques	
  as	
  
subdivision	
   surfaces.	
   To	
   carry	
   out	
   this	
   work	
   we	
   combine	
   phase	
   field	
   models	
   of	
   fourth	
   order	
   with	
   a	
  
geometrically	
  nonlinear	
  Kirchhoff-­‐Love	
  model	
  of	
  thin	
  shells,	
  and	
  a	
  cohesive	
  model	
  to	
  describe	
  the	
  effect	
  of	
  
adherence	
   to	
   a	
   rigid	
   substrate.	
   At	
   the	
   present,	
   phase	
   field	
   fracture	
   modeling	
   has	
   generated	
   interest	
  
because	
  of	
   its	
  simplicity	
  derived	
  from	
  the	
  unified	
  treatment	
  of	
  geometry	
  and	
  mechanics.	
  While,	
   the	
  high	
  
computational	
  cost	
  of	
  phase	
  field	
  models	
   is	
  being	
  exceeded	
  by	
  its	
  ability	
  to	
  treat	
  mobile	
   interfaces	
   in	
  an	
  
integrated	
  manner,	
  and	
  the	
  physics	
  governing	
  its	
  evolution.	
  
	
  
Keywords:	
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  deformations,	
  subdivision	
  surfaces.	
  


